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Abstract—The goal of ”fuzzy hashing” is to identify near
duplicates and similar documents using hashes or digests. We
consider a range of design elements that can be used with
fuzzy hashing schemes. We examine the criteria for evaluating
fuzzy hashes, and develop an approach for optimising a scheme
to respect those criteria. We apply this approach to select
appropriate design elements and parameter values. This results in
surprising choices, the preference of skip-ngrams for adversarial
problem domains; and that 2 bit vectors are preferred to 1 bit
vectors.

Index Terms—Fuzzy Hashing, TLSH, Adversarial Machine
Learning, Ngrams, Skip-Ngrams

I. INTRODUCTION:

There has also been a series of work on “fuzzy hashes”

which allow us to identify that two documents are similar

based on their digest values. TLSH is one of the state of the

art fuzzy hashes [1]–[3]. Fuzzy hashing can be used for a range

of applications associated with malware, such as detecting

malware [4], [5] scalable clustering [6], [7] and identifying

the closest legitimate file to an unknown file so that meta data

and certificates can be compared [8].

Approaches to “fuzzy hashing” include Locality Sensitive

Hashing (such as TLSH [1] and Similarity Digests (such as

Ssdeep [9] and Sdhash [10]). Example applications include

tasks such as malware and spam detection. Fuzzy hashing

schemes are generally intended to work for a range of file

types. NIST [11] offered criteria for the evaluation of fuzzy

hashing approaches:

• Accuracy

• Compression (the digest should be short, preferably fixed

length)

• Performance (digest generation time, and comparison

time), and

• Security of results.

We expanded on the security elements of those criteria, and

recommended that the methods need to be attacked during the

design process and the resilience to attack should be measured

and evaluated [12]. There has been research on attacking

fuzzy hashing schemes including using random modifications

[13] and identifying specific weaknesses [13], [14]. The deep

learning community applied gradient descent algorithms to

create adversarial images [15]. In this paper, we shall adopt

these criteria for a case study in the development of a fuzzy

hashing scheme which is based on the LSH paradigm [1], [16].

We consider a range of extensions, including the form of the

features (ngram, skip-ngram [17] or string), the granularity of

the features (measured in bits), ancillary parameters (such as

length) and parameters which optimize the distance calcula-

tion. We attacked our schemes by adapt the gradient descent

approaches [15] to search for a sequence of transformations

that break the schemes. We present results on the accuracy,

performance and resilience of the schemes.

II. DESIGN PROCESS

In this section, we describe a baseline scheme. Section II-B

offers criteria for making these design decisions by optimising

parameters for accuracy and rejecting schemes which are

easy to attack or have poor performance characteristics. Sec-

tion II-C describes alternative schemes to ngrams and identifies

that skip-ngrams [17] should also be considered during any

experiments. Section II-C offers another alternative to the

baseline scheme, namely the use of a binary code to encode the

digest. Section II-E describes other elements and parameters

which could be sensibly bolted onto to a similarity digest

scheme. We have a wide range of digests schemes which need

to be experimentally evaluated according to the criteria from

Section II-B

A. The Baseline Digest Scheme

A baseline approach to constructing a digest scheme could

be a standard local sensitive hashing scheme [16] with B

buckets, using byte ngrams of length N for input features

and mapping the ngrams to the B buckets using a suitable

hash function. Evaluating a digest would involve the following

steps:

1) process the byte string to evaluate the ngrams, and

calculate the B bucket counts for the hashed ngram

values;

2) calculate the median bucket count.

3) output the digest consisting of the bit string (with length

B) which take value 0 if the bucket count is above the

median value and 1 if the bucket count is less than or

equal to the median value.

The distance function would then be the hamming distance

between two digests. The design elements of our digest scheme

that we need to optimise is B and N . We assume that

the choice of the function mapping ngrams to buckets has

negligible effect on the outcome and use the Pearson hash

[18]. We use N = 5 in the baseline design following the

Nilsimsa [19] and TLSH schemes [1].



B. Optimization Approach

We consider a number of factors when making our design

choices:

1) Accuracy:: It is primary consideration that our digest

scheme can accurately reflects when byte strings are similar.

This can be done using measures such as precision and recall,

detection rates and false positive rates. There is a problem with

using such measures; calculating them requires we specify

some threshold. A suitable way to summarize precision and

recall values is to use the Area Under Curve (AUROC) of

a ROC curve. The advantages of using AUROC are (i) the

AUROC reduces a range of accuracy measurements to a single

number by integrating over the possible thresholds one could

use when using the scheme; and (ii) using the AUROC requires

that the digest scheme to work for a range of thresholds which

covers a wide range of security scenarios. For example, we

may use a high threshold with a high detection rate and high

false alarm rate for identifying candidate samples to be put in

a sandbox. On the other hand, we would typically require a

very low false alarm rate when identifying files to quarantine.

Neither Sdhash and Ssdeep have a range of values which are

suitable for ROC analysis [1].

2) Performance (Time Complexity):: We require that the

digest generation and distance calculations can be done in

reasonable time and space complexity and prefer high perfor-

mance schemes. Size of the Digest (Space Complexity): We

require that the digests be of reasonable length, that is of the

order of the length of schemes such as MD5 (128 bit), SHA1

(160 bit) and SHA256 (256 bit), perhaps somewhat longer. So

we focus on schemes with digests in the range 128-256 bits

and we prefer schemes where the number of bits is a multiple

of 8.

3) Security:: We require that the digest scheme not be

trivial for an attacker to evade. We measure the vulnerability

to attack of a scheme by measuring the degradation in distance

scores achieved by a search algorithm iteratively selecting

transformations that maximise distance scores. We have a

complex decision here. We will reject schemes that have

unacceptable performance or security characteristics. We will

then use accuracy as a primary selection criterion, noting

that amongst schemes with almost equivalent accuracy, we

will use performance and security considerations to select

a preferred scheme. Our approach to design choices and

parameter optimisation is to:

1) consider as many settings as possible;

2) remove candidates which were unacceptable either due

to digest size or unacceptable performance or unaccept-

able security characteristics (trivial to evade);

3) select the candidate designs which had the highest

AUROC;

4) amongst the candidate designs which have the highest

accuracy, use performance and security considerations

to select a preferred design.

C. Feature Selection

In addition to ngrams, we considered a range of features that

are typical of many clustering and ML applications, though

we did not consider features typical of image analysis and

embeddings from Deep Learning that map problems into a

problem space typical of image analysis. We considered 4

types of features:

• Ngrams are used for many clustering and ML applica-

tions. The use of long ngrams for security application

has a serious short-coming (discussed below).

• Bag-of-words are suitable for applications where the

files can be tokenized in some way. A common design

requirement (and for the Security domain in particular)

is that the scheme needs to be applicable to many file

formats (text files, executable files on any architecture,

source files, image files, etc.) This requirement removed

bag-of-words from consideration.

• Variable length strings are used for by some schemes. For

example, Ssdeep [9] uses a rolling hash to split a file into

long segments. A checksum of the segment is taken and

if these segments match, then this contributes towards

matching.

• Skip-ngrams [17] are similar to as ngrams, except that

when processing each window of size N , K bytes are

dropped from the window. They are a far less frequently

used in clustering and ML applications.

Skip-ngrams have many of the properties of ngrams with 2

differences:

1) Skip-ngrams may be require more computational re-

sources; and

2) Skip-ngrams are useful for short strings.

Skip-ngrams potentially offer an attack surface which is con-

siderably more difficult to attack than ngrams. We draw a

distinction between long ngrams / strings and short ngrams /

strings. Attacking an ngram solution (with large N ) is straight

forward and can be achieved by changing every Nth byte. For

example, attacking Sdhash [10] (which uses-64 grams) can be

achieved by changing every 64th byte. Similarly attacking the

Ssdeep scheme is straight forward, by making sure that a byte

in each long string extracted is modified. Short sed scripts that

evaded Sdhash and Ssdeep for HTML and source code files

are given in [13] (responsible disclosure done at the time).

With shorter ngrams / strings (say N = 3), the amount of

change to defeat a scheme is significant (changing 33% of the

file when N = 3). Due to this reason, we consider shorter

ngrams (with N < 9) for the remainder of the paper.

D. Bits Per Bucket (BPB)

With Locality Sensitive Hashing [16], it is standard to have

a random projection function which maps each projection of

the input sample (which we are assigning to a “bucket”) to 0,

1. Similarly, in related fields such as Semantic Hashing, the

autoencoder vector is typically mapped to a binary string [20].

We can consider functions which map a bucket onto 3 or more

values. This introduces additional complexities in the distance



calculation since a hamming distance may longer be a suitable

approach to compare values. We shall term the number of bits

per bucket as BPB. Here we will consider schemes which use

more values, and add additional parameters so that we can

optimise our distance function. We considered two methods

for allowing each bucket to have 3 values:

• allow BPB=2 bits in the digest for each bucket position.

This would result in a digest which could be readily

interpreted, but is inefficiently encode.

• efficiently encode the bits into a byte. While space

efficient (the BPB would be fractional), this would lose

the feature that the digest could be readily understood.

Therefore, we restricted the number of values per bucket to

being either 2 (a binary code with BPB=1) or 4 (where each

bucket is represented by BPB=2 bits).

E. Other Design Elements

We also considered how the length of the input byte string

can be used. One approach is to add a function of the length

to the digest. When we add this value to the digest we need to

optimise a length parameter which accounts for any change to

the distance function. We note that other elements have been

previously proposed such as quartile ratios and checksums,

but we do not have space to optimise these parameters in this

paper.

III. APPLYING THE DESIGN PROCESS

We now apply the design process as described in Section II.

Section III-A describes a dataset suitable for security applica-

tions and labelled it in a manner which allows calculation

of the AUROC for a given digest scheme. Section III-C

looks at skip-ngrams, specifically looking at the computation

complexity associated with various choices of K and N . We

identify a list of candidate skip-ngram which can be used. In

Section we perform tests on our set of digest schemes, and

selected a candidate list with the highest AUROC scores.

A. The Data Set

We used a combined data set from [1] and [13] which

consisted of 2 components: a distinct file set; and a similar

file set. The distinct file set consisted of:

1) malware files (PEfiles) from different malware families

2) executables files (Elf files), both legitimate and randomly

constructed HTML fragments,

3) random text selected from the Unix dictionary (with no

overlapping words),

4) image files from spam images, and

5) text files about different topics.

They key to these files is that we have no reason to believe

that they are similar. The similar file set consisted of groups of

files where we could safely label as similar. For the malware

files, we collected samples from the same malware family.

For example, the similar set included 20 binary files from

a set of malware families including the TROJ DROPPER,

TROJ ZLOB, WORM SOBER, etc malware families. We

created similar sets for the text files by selecting words and

replacing them with a word from another text file. Further

variants were created by using the Linux command ”fmt”

(which is considered similar because it alters the formatting

without altering the contents) and a random sort command

(which altered the ordering of the lines without modifying

their content).

B. Evaluating AUROC Values

Given a threshold T, we define a false positive as occurring

when the distance between two distinct files ¡= T; and a true

positive as occurring when the distance between two similar

files ¡= T. With these definitions, we can plot a ROC curve

and calculate AUROC.

C. Notes on Skip-ngrams

The smallest non-trivial skip-ngram is a K = 2, N = 4

skip-gram. When considering a window of length 4 bytes,

there is 4C2 = 6 ways of selecting 2 bytes from the window,

which we have labelled A-F below:

A: X X - -

B: X - X -

C: X - - X

D: - X X -

E: - X - X

F: - - X X

But choices D, E and F are redundant. They will be covered

as a window moves along the byte string. We need to avoid

double counting the same set of bytes extracted. We find that

the number of ways of extracting non-redundant byte sets from

a window of size N with K skips is:

Z =

(

N − 1

N −K − 1

)

The speed in calculating the digest is dominated by the byte

set extraction code [21] (version 3.11), so Z (the number of

byte sets in a skip-ngram is a direct measure of the speed for

calculating the digest. Table I gives a list of the number of

non-redundant byte sets, Z, for a range of skip-ngrams with

at least 3 bytes in it. The N column is the window size, K is

the number of bytes skipped and BE is the number of bytes

extracted. For reference, timing estimates of an optimized

skip2-ngram5 (Z = 6) is of roughly the same speed as

optimized MD5 and SHA1.

N K BE Z

skip1-ngram4 4 1 3 3C2 = 3
skip2-ngram5 5 2 3 4C2 = 6
skip3-ngram6 6 3 3 5C2 = 10
skip4-ngram7 7 4 3 6C2 = 15
skip5-ngram8 8 5 3 7C2 = 21
skip1-ngram5 5 1 4 4C3 = 4
skip2-ngram6 6 2 4 5C3 = 10
skip3-ngram7 7 3 4 6C3 = 20
skip4-ngram8 8 4 4 7C3 = 35

TABLE I
THE NUMBER OF NON-REDUNDANT BYTE SETS.



Digest AUROC Representative Representative Representative
length (bits) Threshold FP rate Detection rate

48 0.82330 2 0.01 0.0877
128 0.9194 2 0.01 0.1818
256 0.9527 3 0.01 0.3156
256 BPB=2 0.9651 33 0.01 0.6356

TABLE II
EXPERIMENT 1: AUROC FOR BASELINE SCHEMES WITH N = 5.

Length AUROC Length AUROC
Parameter Parameter

0 0.9651 9 0.9843
1 0.9754 10 0.9843
2 0.9792 11 0.9843
3 0.9812 12 0.9843
4 0.9824 13 0.9842
5 0.9832 14 0.9841
6 0.9837 15 0.9839
7 0.984 20 0.9833
8 0.9842 N/A N/A

TABLE III
EXPERIMENT 2: AUROC FOR LENGTH PARAMETER VALUES.

Design AUROC Threshold FP rate Detection
Rep. Rep. Rep. rate

ngram3 0.9746 47 0.01 0.8589
ngram4 0.977 55 0.01 0.8512
ngram5 0.9858 69 0.01 0.903
ngram6 0.9794 68 0.01 0.8134
ngram7 0.9884 93 0.01 0.9308
ngram8 0.9876 94 0.01 0.9178
skip1-ngram4 0.9836 47 0.01 0.8555
skip2-ngram5 0.9852 51 0.01 0.9019
skip3-ngram6 0.9851 51 0.01 0.871
skip4-ngram7 0.9864 56 0.01 0.9145
skip5-ngram8 0.9846 53 0.01 0.8704

TABLE IV
EXPERIMENT 3: AUROC FOR VARIOUS NGRAM AND SKIP-NGRAM

SCHEMES.

D. A Series of Experiments

In this section, we will start with our baseline method

and perform experiments to determine candidate schemes

with high AUROC scores. We will do this work as a series

of experiments. The space of possible design choices is a

complex space, and we did optimization of AUROC scores

in many different experiments to arrive at a candidate list of

schemes. In this paper, we shall describe this as a series of

experiments which highlight the approach used.

Experiment 1: The number of buckets. We start with a

binary scheme (BPB=1) and evaluate the AUROC while using

a distance function which is the hamming distance between

the digests. In Table II, we present results varying the digest

length. We show the AUROC with a representative threshold,

FP rate and detection rate. The bottom row in Table I shows

the result using a bit per bucket value of 2, and 128 buckets.

For this scheme we need to define an extension of hamming

distance because we need to be able to determine the distance

between two bucket values in the range of 0-3. We use the

absolute difference of the two values. For example, if a bucket

in the first digest has value 3 (binary 11) and the corresponding

bucket in the second digest has a value of 1 (binary 01), then

the distance contributed from this bucket is abs(3-1) = 2.

Interestingly the schemes with 256 bits (64 hex digits) have

quite different results and we prefer the BPB=2 scheme (which

is a non-standard choice).

Experiment 2: The length parameter. We start with the best

scheme from Experiment 1 and do experiments to determine

suitable values for the length parameter. The length parameter

works in the following manner. Digest 1 and 2 have value for

the floor(log(byte length)). The value added to the distance

between digest 1 and 2 will be a multiple of the difference of

the floor(log(byte length)), where the multiple used is termed

the “length parameter”. Table III gives AUROC scores for a

range of length parameter values with N = 5. We selected a

value of length parameter = 12 since this optimized AUROC

scores. We give an example representative classifier from this

with a threshold of 46, which results in a detection rate of

0.8790 for our representative false positive rate of 0.01.

Experiment 3: Ngram versus skip-ngram. We implemented

the ngram schemes for N from 3 to 8, and the skip-ngram

schemes from Table I which extracted 3 bytes. Table IV gives

AUROC scores for these ngram and skip-ngram schemes with

an optimized length parameter and using BPB=2. All the

ngram and kskip-ngram schemes with N ≥ 5 have good

accuracy.

Experiment 4: Attacking Ngram and skip-ngram. We have

a range of ngram and skip-ngram candidates from Experiment

3, which have high accuracy. No single choice (with N ≥ 5)

stands out as preferable, so we now consider the security and

performance considerations. We performed a simple attack

scenario where we do simple modifications to a text file using

a gradient descent algorithm. We apply 50 transformations,

where at each step we select the transformation from SW

modifications. The 10 possible transformations [13] were

1) insert word,

2) delete word,

3) substitute word,

4) delete 10 char,

5) insert 10 char,

6) change 10 char,

7) add a high entropy token,

8) add a low entropy token,

9) swap 2 lines, and

10) change the case of 10 char.

Table V shows the distance increase achieved by the 50

transformations. We see very different behavior between the

ngram type features and the skip-ngram type features.

As N grows with the ngram type features, the methods are



Search ngram4 ngram5 ngram6 ngram7 ngram8
Width

Random SW=1 7.3 7.9 14.5 17.3 22.3
1 12.7 18.3 22.4 27.0 30.2
2 15.4 23.0 25.4 30.2 39.7
5 23.2 28.1 30.7 35.1 48.4
10 22.6 33.2 33.0 37.4 55.0
15 25.4 31.2 32.0 43.4 57.4

Search skip1 skip2 skip3 skip4 skip5
Width -ngram4 -ngram5 -ngram6 -ngram7 -ngram8

Random SW=1 5.9 6.8 7.4 5.9 3.9
1 9.1 10.7 9.5 6.6 3.5
2 10.7 13.4 10.6 7.6 4.5
5 12.8 14.8 12.9 10.4 6.6
10 13.2 15.4 13.5 9.3 7.9
15 16.0 16.1 13.7 11.3 7.5

TABLE V
EXPERIMENT 4: RESULTS FOR ATTACKING NGRAM AND SKIP-NGRAM SCHEMES.

more vulnerable to both random attack, and intelligent attacks

(SW > 1). The opposite effect occurs with skip-ngram type

features; as N grows the methods are more resilient to attack.

Here the data in this experiment, backs up our intuition and

various security analyses of Sdhash and Ssdeep (methods that

rely on long strings and long ngrams are easy to attack).

E. Selecting a Preferred Design

Most of the choices were fairly clear cut, except the choice

of ngram versus skip-ngram. The data in Table IV provides

accuracy data to compare ngram and skip-ngram. We found a

set of methods where the difference in accuracy was negligible.

The data in Table V suggests very strongly that skip-ngrams

are significantly harder to attack. Using skip-ngrams comes

with a performance cost which is shown in Table I. We

therefore make the following recommendations. For security

tasks,

1) If the performance of calculation of the digest is a

concern, then the skip2-ngram5 is preferred. This is the

TLSH method [Oliver2013]

2) If the performance of calculation of the digest is not a

concern, then the skip2-ngram7 or skip2-ngram8 should

be considered.

For non-security tasks

1) If the cost of computation is a factor, then ngram5-

ngram8 should be considered.

2) If the cost of computation is not a factor, then all of the

ngram and skip2-ngram methods with N > 4 should be

considered.

IV. CONCLUSION

This paper has looked at criteria for developing fuzzy

hashing schemes. We focus on the development of fuzzy

hashing schemes that

• are accurate,

• have fast run-time performance,

• will operate in adversarial environments, and

• will work for a wide range of file types.

The two primary choices for feature types are ngrams and

skip-ngrams.

We find that LSH schemes using ngrams and skip-ngrams

have comparable accuracy. However, the skip-ngrams are far

more resilient when attacked. The ngram schemes have the

same run-time performance with each other. The run time

performance of the skip-ngram schemes quickly degrades as

the sliding window size, N , grows. We highlighted one of the

design choices available, which was a skip-ngram scheme with

K = 2 and N = 5.

The various approaches described here has been released

as the open source TLSH [1], [21]. The default scheme

in that software is the skip-ngram scheme with K = 2

and N = 5, which exhibits good accuracy, fast run-time

performance, resilience to attack and works for a wide range

of file types. We would also consider the evaluation of other

more complicated skip-ngram schemes (higher K, higher N )

for problem domains which require resilience to adversarial

attack, and have lower run-time performance requirements.
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