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Abstract

We consider the situation where we wish to cluster some data according to a dis-
tance function. The data under consideration is high dimensional, and the number
of clusters is unknown. We propose a single-linkage algorithm which has features
suitable for clustering large datasets of this type. We define a clustering of a data set
as being optimal with respect to a distance parameter, CDist, if every pair of points
which occur within a distance of CDist are in the same cluster. The proposed
algorithm uses Vantage-Point-Trees to provide fast nearest neighbor search result-
ing in optimal single-linkage clustering with time complexity O(Nlog2N). We
offer adjustments to the algorithm that reduce the time complexity to O(NlogN),
but we lose the guarantee of optimal clustering. We argue that features of high
dimensional spaces mean that the modification is likely to result in near optimal
single-linkage clustering. We then explore a public data corpus, and verify that
the proposed algorithm results in near optimal clustering with time complexity
O(NlogN).

1 Introduction

We consider the situation where we wish to cluster some data according to a distance function. We
were motivated by the requirements from computer security applications and found that existing
clustering algorithms had limitations. The requirements were to cluster data large sets of high
dimensional data. The number of clusters is unknown, potentially the size of important clusters could
be very small (as small as 2), and the density of clusters varies considerably.

There is a number of clustering approaches to consider: Kmeans and Kmedoid require the number of
clusters be defined before analysis and they are unreliable for identifying small clusters. DBScan
[7, 22] will exhibit O(N2) time complexity with high dimensional data, and setting its minPts
parameter (which defines a minimum density) is difficult when we expect the densities of clusters
to vary significantly. Naive hierarchical clustering (or single link clustering such as SLINK [23])
resolve the issues around the number and density of clusters, but their O(N2) time complexity makes
their use infeasible.

There are also clustering approaches using Locality Sensitive Hashes (LSH) [8]. LSH have received
considerable attention in technical papers [12, 8, 6]. The LSH-based clustering approaches fall into 2
categories:



1. Collision-based methods that use the LSH to map points onto a bucket in constant time and
thereby achieve O(N) clustering (such as [13]). If the collision rate is not adequate or false
alarms are occurring, then one approach is to use multiple LSH functions [15].

2. Distance-based methods that use the LSH to define the distance metric between points,
and use indexing structures such as Vantage-Point-Trees (VPT) [25, 26] to do fast nearest
neighbor search (such as HAC-T [18]).

Collision-based methods are ideal when the LSH buckets have a good fit with the desired clusters.
However, it has been reported that creating this good fit can be difficult [24, 11]1. One area is
interesting where there has been much public discussion, evaluation of collision-based versus distance-
based schemes is computer security (where the area is described as "fuzzy hashing") [16]. 15-20
years ago there were many collision-based fuzzy hashing schemes for computer security, and this
has moved to scoring schemes [16]. In Table 4 of a 2021 comprehensive survey of fuzzy hashing
schemes [16], 13 of 14 schemes used distance or similarity scores.

Here, we look at the distance-based LSH clustering 2. HAC-T does a nearest neighbor search using a
VPT for each point in a dataset [18]. If the VPT search can achieve an average time complexity of
O(logN) [26], then the overall clustering is time complexity O(NlogN). In this approach, we can
use LSH where the buckets are more fine grain than the desired cluster size, but it is not useful to use
LSH where the buckets are larger than the desired cluster size.

In this paper, we review the HAC-T algorithm and compare with previous clustering algorithms.
The previous description of HAC-T was limited to applications in computer security, and assumed a
distance function which only took integer values.

Both HAC-T and DBSCAN use a parameter which defines the distance between points where we
will identify points as belonging to the same cluster (ε for DBSCAN, CDist for HAC-T). We define
a clustering of a data set as being optimal with respect to a distance parameter, CDist, if every pair
of points which occur within a distance of CDist are in the same cluster. DBSCAN has additional
parameter for the minimum number of points to be included in a cluster. DBSCAN can form ‘optimal’
clusterings in the sense being used here when the minimum number of points in a cluster is 2, but this
can result in inefficient time performance.

We adapt HAC-T to the general clustering setting and demonstrate that VPT search can
achieve optimal single-linkage clustering. We apply HAC-T to a public corpus, and ver-
ify both the quality and performance of the clustering. The code has been open sourced at
https://github.com/trendmicro/tlsh/tree/master/tlshCluster .

1.1 Overview of Indexing Methods

There are a number of methods for efficient nearest neighbor search in metric spaces, including K-d
trees [5], R-Trees [10] and Vantage-Point-trees [25, 26] (also called metric trees). These methods
avoid brute force search by identifying parts of the tree where near neighbors cannot exist, and
hence search in those parts of the tree can be abandoned. These methods are also suitable for
approximate nearest-neighbor search [17]. And these can be used in clustering applications. For
example, DBSCAN [7] uses R-Trees to find all close members of a point under consideration (and
thus avoids a linear search through the database).

Vantage-Point-trees (VPT) have been used in fewer applications than K-d trees and R-Trees, which
have been in the areas such as image segmentation [14]. VPT are most advantageous for high
dimensional data [26], where K-d trees and R-trees are known to degrade [22]. Recently, VPT have
proven themselves useful in area of computer security [18, 2].

1.1.1 Vantage Point Tree Search

To enable efficient nearest neighbor search through our dataset D, we build a binary search tree using
randomized selection of items to place points at internal nodes. Each internal node of the binary
tree contains a "VantagePoint" (from D) and left and right children (LC and RC). In addition, each
internal node contains a Threshold value selected such that:

1This is an issue shared with DBScan which suffers when the data has clusters with a wide range of densities.
2The technique also applies to high dimensional data which has a distance metric defined.
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Algorithm 1 V PTSearch(node, searchItem, notInC, best)
if node == NULL then

return
end if
d← distMetric(node.Point, searchItem)
if (cluster[node.Point] 6= notInC) AND (d < best.Dist) then
best.Dist← d
best.Point← node.Point

end if
if d ≤ node.threshold then
V PTSearch(node.LC, searchItem, ignoreList, best)
if d+ best.Dist ≥ node.Threshold then
V PTSearch(node.RC, searchItem, ignoreList, best)

end if
else
V PTSearch(node.RC, searchItem, ignoreList, best)
if d− best.Dist ≤ node.Threshold then
V PTSearch(node.LC, searchItem, ignoreList, best)

end if
end if

• all x in the left subtree satisfy distMetric(x, V antagePoint) < Threshold, and

• all x in the right subtree satisfy distMetric(x, V antagePoint) ≥ Threshold.

Let the root of the tree be rootV PT . The procedure for finding a searchItem in a VPT with root
node is shown in Algorithm 1. We have adapted the standard VPT search to optionally not return the
nearest neighbor which is in a specified cluster (notInC). This pseudo-code is provided as python
code at https://github.com/trendmicro/tlsh/tree/master/tlshCluster . We note that the distance function
should be a distance metric3, due to the use of the triangle inequality to determine when backtrack
is needed. The worst case search time of a VPT is O(N), however in appropriate conditions (high
dimensional situations with a reasonable distance metric) the search time is found to be O(logN)
(Yianilos [26] argues without proof that the expected search time is O(logN)).

1.2 HAC-T

In this section, we present the HAC-T for clustering a dataset D with a distance metric distMetric.
HAC-T requires the cluster distance parameter, CDist, the distance for a single link. This algorithm
is optimal w.r.t creating a single linkage clustering. If two points have a distance ≤ CDist, then
either they will be merged in Step 2 (the normal case) or the loop in Step 3 will identify those points
and merge their clusters.

1.2.1 Time Complexity

Step 1 is time complexityO(NlogN). Step 2 is also time complexityO(NlogN) as the while loop is
executed a maximum of N times, and the deleting an element from a heap takes O(logN) operations.
Step 3 consists of the following embedded loops.

while $len(Clusters\_to\_examine) > 0$
for each cluster $C \in Clusters\_to\_examine$

for each item $A \in C$
VPTSearch(rootVPT, A, listMembers(Cluster(C)), best)$

The worst case4 occurs when we merge half the clusters on the first iteration of the while loop, and a
quarter of the points on the second iteration etc. Which means that in the worst case, we perform
the while loop O(logN) times. The VPTSearch is an O(logN) operation. The pair of for loops are

3Vantage Point trees allow distance functions that are within a constant of a distance metric. The code in the
supplemental material shows this enhancement.

4The points would need to be carefully crafted to result in this behaviour.
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Algorithm 2 HAC_T_opt(D,CDist)

Step 1: Preprocess data
heap = NULL
for each item A ∈ D do
V PTSearch(rootV PT,A, [A], best)
heap.Insert (A, best.Point, best.Dist)

end for

Step 2: Cluster data
for each item A ∈ D do

Put A in its own cluster
end for
while heap.nelem() > 0 do
(A,B, dist)← heap.deleteTop()
if dist < CDist AND cluster(A) <> cluster(B) then
Merge(cluster(A), cluster(B))

end if
end while

Step 3: Find clusters which need to be merged
Clusters_to_examine← All_clusters
while len(Clusters_to_examine) > 0 do
lmodified← []
for each cluster C ∈ Clusters_to_examine do

for each item A ∈ C do
V PTSearch(rootV PT,A, listMembers(Cluster(C)), best)
if best.Dist ≤ CDist then
newCluster ←Merge(cluster(A), cluster(best.Point))
lmodified.append(newCluster)

end if
end for

end for
Clusters_to_examine← lmodified

end while

resulting in an O(NlogN) operation. So the worst case for Step 3 overall is O(Nlog2N) operations.
Step 3 is dominating the time complexity, while identifying long "stringy" clusters which are less
likely to occur with the high dimensional data.

1.2.2 Edge Cases

Figure 1: Edge Case for Step 2.

Step 2 will fail to merge some items which are near neighbors (with dist ≤ CDist). This occurs
when 2 pairs of points are closer to each other than to the other pair of points as shown in Figure 1.
With a CDist=20 all 4 points in the figure should be merged. However, Step 2 will create 2 clusters:

• (Point_1, Point_2)

• (Point_3, Point_4)
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1.2.3 HAC-T

To create a faster algorithm, we augment steps 1 and 2 to cover the important edge cases, and remove
Step 3. To do this we modify:

• Instead of doing the VPTSearch at the beginning, we do this search just before we Merge
clusters in step 2. We are exploiting the modification done to VPTSearch we introduced
above where we can efficiently exclude points which are in the same cluster as the point
under consideration.

• We identify clusters which have a nearby point belonging to another cluster. We define
points (A,B) as being "nearby" when

CDist < dist(A,B) ≤ 2× CDist
We record these in a tenative heap (tent_heap). We note that 2 is a parameter which could
be adjusted for various applications.

• After we have processed all points identifying points within our cluster distance (CDist),
we process the tent_heap. In the TentativeMerge procedure, we examine all points in a
cluster to determine if they are within CDist of points belonging to other clusters. If we
find a pair of points within distance CDist, then we Merge the clusters for those points.

Algorithm 3 HAC_T (D,CDist)

Step 1: Initialise
tent_heap = NULL
for each item A ∈ D do

Put A in its own cluster
end for

Step 2: Cluster data
for each item A ∈ D do
V PTSearch(rootV PT,A, cluster[A], best)
if cluster(A) <> cluster(best.Point) then

if d ≤ CDist then
Merge(cluster(A), cluster(best.Point)

else if d ≤ 2 ∗ CDist then
tent_heap.Insert(A, best.Point, best.Dist)

end if
end if

end for
while tent_heap.nelem() > 0 do
(A,B, dist)← tent_heap.deleteTop()
if cluster(A) <> cluster(B) then
TentativeMerge(cluster(A), cluster(B)

end if
end while

The HAC-T algorithm does not guarantee an optimal single link clustering. That is there may be
distinct clusters (cA, cB) where

A ∈ cA AND B ∈ cB AND dist(A,B) ≤ CDist
For the applications we have studied, this occurs rarely (more details in the results section).
We expect that the while loop calling TentativeMerge will be doing minimal work, which occurs if a
reasonable distance function and CDist parameter are used. If the main for loop (calling Merge)
dominates, then the time complexity is O(NlogN), which is suitable for clustering large datasets.

2 Implementation and Results

We implemented the pseudo code in this paper as hac-t.py at
https://github.com/trendmicro/tlsh/tree/master/tlshCluster . The code provided closely follows the
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structure here in the paper. In addition, in that repository we provide scripts and Jupyter notebooks
for processing and understanding the Malware Bazaar dataset.

2.1 Data

In these experiments, we report on analysis of 132,134 data points collected from Malware Bazaar
[3]5. This data has the TLSH digest which gives a 132 dimensional representation of the malware
file [3]. Each datapoint represents a malware file, and a malware label is provided6. The labels are
assigned by submitters, and the dataset has 240 distinct non-empty labels.

The 132 dimensional representation is based on random projections of the files bytestream. These
features are independant of the labels [19]. The distance function derived from these features is
available on both Github [9] and Pypi.org [21] under either the Apache or FreeBSD license.

2.2 Experiment 1: Cluster Quality

We consider a range of CDist values (0-100)7 and do repeated experiments on 10K of the dataset to
determine the consistency of the labels within clusters. A cluster is defined as being cluster-pure if
it has a single label and as cluster-impure if it contains 2 or more distinct labels 8. In addition, we
measure the percentage of the dataset being clustered and that we are getting a reasonable number of
clusters. Figure 2 shows this data as we vary the CDist parameter.

Figure 2: Cluster characteristics versus CDist parameter

The recommended cluster radius for the distance function provided is in the range (10-50) and
possibly going up to 100. The plot shows cluster purity in the range 89% - 98%. Given that the
data set has 240 distinct labels, then this is good-excellent cluster quality. Ad-hoc inspection of the
clusters backs up this interpretation.

For this application, we can set the CDist parameter to allow different cluster densities and sizes:
very pure clusters (purity ≥ 95%) with a lower coverage (coverage ≤ 60%), to
less pure clusters (purity ≤ 79%) with better coverage (coverage ≥ 75%).

5The ToS for the data from Malware Bazaar are compatible with research uses. Refer to [4].
6Malware labels are generally considered as being somewhat unreliable [20, 1].
7The range 0 to 100 in recommended in the definition of the LSH [19].
8For some clusters, we find multiple labels that relate to the same malware family. For the purposes of this

research, we leave these clusters as cluster-impure.
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2.3 Experiment 2: Timing

We ran the Python code9 for datasizes varying from 5,000 to 60,000 and measured the total time
taken to cluster the dataset for both HAC-T and HAC-T-opt with the CDist parameter set to 30. The
time measured also includes the time taken to build the VPT. Figure 3 shows the time taken versus
datasize graph. For HAC-T, we see timing consistent with the time complexity O(NlogN). For
HAC-T-opt we see better performance than the worst case analysis, and closer to the overall shape of
an O(NlogN). It appears that Step 3 of HAC-T-opt is using approximately half the time used.

Figure 3: Time taken versus datasize graph

This experiment generated a total of 69490 clusters and the HAC-T approach generated a total of 48
clusters which were not identical to the HAC-T-opt. Each of those cases was a situation of two tight
clusters with a single link of greater length consistent with the situation discussed in the Edge Case
section.

2.4 Experiment 3: Cluster Density

We examined the clustering of the 60,000 sized dataseta (again with the CDist parameter set to 30)
and plotted the cluster radius versus number of items in the cluster, as shown in Figure 4.

Figure 4: Cluster radius versus number of items plot

We see the majority of clusters have a cluster radius ≤ 60 (which is twice the single linkage allowed),
and nitems ≤ 500. Some clusters of interest are:

1. A cluster with 3431 items and a radius of 17 with nearly all having the label of NO_SIG.
2. A cluster with 2700 items and a radius of 20. 2696/2700 of them were labelled Quakbot.

9We have used Python code for comprehensibility. Table IV of [18] reports a C++ version using a VPT
approach as clustering 1 million samples in 478 seconds on a standard AWS instances.
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3. A dense cluster with 598 items and a radius of 2. This was uniformly labelled Trickbot.
4. The "stringiest" cluster contained 137 items, had a radius of 165 and 7 distinct labels.

This plot highlights the problems with selecting a single parameter to cover a range of cluster
densities.

2.4.1 Understanding and Using the Clustering

The clustering created by these programs has been depicted as dendrograms at
https://github.com/trendmicro/tlsh/blob/master/tlshCluster/malbaz.ipynb .

In Figure 5 we show various clusters of Ficker Stealer malware in the form of a dendrogram. The
naming of the clusters consists of 3 elements

• The name of the majority malware family in the cluster (as identified by a variety of threat
experts associated with Malware Bazaar);

• The first seen data for the cluster (the date when the first sample in the cluster was submitted);
and

• The number of samples in the cluster;

The dendrogram gives us a compelling depiction of the data from a number of perspectives:

• There is consistency in the closest clusters being related (this is a known feature of malware.
Malware authors are constantly mutating their malware to avoid detection.); and

• We find close clusters are associated in time which reflects that the mutation of malware
grows as time goes on.

Figure 5: A dendrogram of the FickerStealer malware family

In Figure 6 we show various clusters centered on a specific TLSH value:
T14893F844FD459B2FC3D372F6E75C028D763A1FE8A7E630269934BEA023F56D12526911.
We see that the clusters near this value include both the Gafgyt and Mirai malware families.
We see that there is a large branch of Gafgyt malware clusters at the top of the diagram
and a large branch of Mirai malware clusters at the bottom of the diagram. This makes
perfect sense. It was reported in April 2021, that Gafgyt had started re-using Mirai code
https://securityaffairs.co/wordpress/116882/cyber-crime/gafgyt-re-uses-mirai-code.html .

We have depiected 2 dendrograms here, but we not that this feature of the clusters showing useful
relationships occurs accross many malware families which are in the Malware Bazaar dataset. The

8



Figure 6: A dendrogram of the Gafgyt and Mirai malware families

relationships found are consistent with computer security background knowledge and offer useful
guides to understanding how cybercriminals are mutating their malware.

3 Conclusions

We developed algorithmically fast clustering approaches for high dimensional data with an associated
distance function. We used a distance function based on a fine-grain LSH where the clusters are larger
than the LSH-bucket size (represented by distances > 1). We develop HAC-T-opt an optimal single-
linkage clustering algorithm with time complexity O(Nlog2N). We adapted the HAC-T algorithm
that reduce the time complexity to O(NlogN), but we lost the guarantee of optimal clustering.

We explored the use of the TLSH distance measure in combination with the HAC-T algorithm on
Malware Bazaar (a public data corpus of high dimensional malware data). We verified that this
resulted in clustering which is consistent with expert labelling and provided near optimal clustering
with time complexity O(NlogN). In addition, we found that approaches described afford significant
insights into the data.
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